Intravenous Administration of Substance P Attenuates Mechanical Allodynia Following Nerve Injury by Regulating Neuropathic Pain-Related Factors
نویسندگان
چکیده
This study aimed to investigate the analgesic effect of substance P (SP) in an animal model of neuropathic pain. An experimental model of neuropathic pain, the chronic constriction injury (CCI) model, was established using ICR mice. An intravenous (i.v.) injection of SP (1 nmole/kg) was administered to the mice to examine the analgesic effects of systemic SP on neuropathic pain. Behavioral testing and immunostaining was performed following treatment of the CCI model with SP. SP attenuated mechanical allodynia in a time-dependent manner, beginning at 1 h following administration, peaking at 1 day post-injection, and decaying by 3 days post-injection. The second injection of SP also increased the threshold of mechanical allodynia, with the effects peaking on day 1 and decaying by day 3. A reduction in phospho-ERK and glial fibrillary acidic protein (GFAP) accompanied the attenuation of mechanical allodynia. We have shown for the first time that i.v. administration of substance P attenuated mechanical allodynia in the maintenance phase of neuropathic pain using von Frey's test, and simultaneously reduced levels of phospho-ERK and GFAP, which are representative biochemical markers of neuropathic pain. Importantly, glial cells in the dorsal horn of the spinal cord (L4- L5) of SP-treated CCI mice, expressed the anti-inflammatory cytokine, IL-10, which was not seen in vehicle saline-treated mice. Thus, i.v. administration of substance P may be beneficial for improving the treatment of patients with neuropathic pain, since it decreases the activity of nociceptive factors and increases the expression of anti-nociceptive factors.
منابع مشابه
Paroxetine Attenuates the Development and Existing Pain in a Rat Model of Neurophatic Pain
Background: P2X4 receptor (P2X4R), a purinoceptor expressed in activated spinal microglia, plays a key role in the pathogenesis of neuropathic pain. Spinal nerve injury induces up-regulation of P2X4R on activated microglia in the spinal cord, and blockade of this receptor can reduce neuropathic pain. The present study was undertaken to determine whether paroxetine, an inhibitor of P2X4R, could ...
متن کاملP 15: Forced Exercise Attenuates Neuropathic Pain in Chronic Constriction Injury Male Rat: An Approach to Oxidative Stress and Inflammation
Introduction: Peripheral and central nerve injuries cause chronic neuropathic pain in many injured people besides motor disability. Exercise, as a behavioral and non-pharmacological treatment, has beneficial effects on people’s general health both for healthy and sick people. Therefore, this study was conducted to examine the effects of exercise on neuropathic pain induced by chronic cons...
متن کاملEnhancement of Antinociceptive Effect by Co-administration of Amitriptyline and Crocus sativus in a Rat Model of Neuropathic Pain
The aim of this study was to evaluate the anti-nociceptive effects of a low, sub-effective dose of amitriptyline, in combination with the different doses of ethanolic and aqueous extracts of Crocus sativus following sciatic nerve chronic constriction injury (CCI) in rats. Amitriptyline (3, 10 and 30 mg/kg, i.p.) and the extracts (25, 50 and 100 mg/kg, i.p.), were separately administered at the ...
متن کاملInteraction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملInteraction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کامل